50=7^x*5x+3

Simple and best practice solution for 50=7^x*5x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 50=7^x*5x+3 equation:



50=7^x*5x+3
We move all terms to the left:
50-(7^x*5x+3)=0
We get rid of parentheses
-7^x*5x-3+50=0
We add all the numbers together, and all the variables
-7^x*5x+47=0
Wy multiply elements
-35x^2+47=0
a = -35; b = 0; c = +47;
Δ = b2-4ac
Δ = 02-4·(-35)·47
Δ = 6580
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6580}=\sqrt{4*1645}=\sqrt{4}*\sqrt{1645}=2\sqrt{1645}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{1645}}{2*-35}=\frac{0-2\sqrt{1645}}{-70} =-\frac{2\sqrt{1645}}{-70} =-\frac{\sqrt{1645}}{-35} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{1645}}{2*-35}=\frac{0+2\sqrt{1645}}{-70} =\frac{2\sqrt{1645}}{-70} =\frac{\sqrt{1645}}{-35} $

See similar equations:

| x=0.3x+(1-0.3)(2+0.5) | | 2x÷10=x-4÷8 | | 4(3x-1)+7-x=2x+3+9x= | | 17x+2=7x+17 | | 1/5y+11=3-3/5y= | | 2x-4X+8=4x+12 | | 2x-4×+8=4x+12 | | 4y+9/2-4y-9/6=10 | | -6x-3=-4x-15 | | 3x-2+6=(5+2x+11) | | x-1=-2x+20 | | 0.4×25-3.5x=6.5 | | 1=42x-2=0 | | 2,5(2-4x)=-11x+6 | | 4(x+2)^2-6=-18 | | 0,5(2x-4)+3=12 | | 10x-3x+5=18-×+4 | | 40946=293*c | | 2x-1=83 | | -8x-16=-5x-34 | | 5x+7=2x–2 | | 7/2x-3=5/2 | | x3+10x-80=0 | | 8d-168=16 | | 4/5x-4=3 | | 10×y=121 | | X+6=x+6=x-3 | | 0.25=1÷2×p | | 2x-5=5x8 | | -0.10(81)+0.65x=0.05(x-18) | | 8x-3x-2x+15=22 | | y/4+3=13 |

Equations solver categories